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Introduction 

• After scientists became disillusioned with 
classical and neo-classical attempts at 
modeling intelligence, they looked in other 
directions.  

• Two prominent fields arose, connectionism 
(neural networking, parallel processing) and 
evolutionary computing.  

• It is the latter that this essay deals with - 
genetic algorithms and genetic programming. 



What is GA 

• A genetic algorithm (or GA) is a search technique 
used in computing to find true or approximate 
solutions to optimization and search problems.  

• Genetic algorithms are categorized as global search 
heuristics.  

• Genetic algorithms are a particular class of 
evolutionary algorithms that use techniques inspired 
by evolutionary biology such as inheritance, 
mutation, selection, and crossover (also called 
recombination). 



What is GA 

• Genetic algorithms are implemented as a computer 
simulation in which a population of abstract 
representations (called chromosomes or the 
genotype or the genome) of candidate solutions 
(called individuals, creatures, or phenotypes) to an 
optimization problem evolves toward better 
solutions.  

 

• Traditionally, solutions are represented in binary as 
strings of 0s and 1s, but other encodings are also 
possible.  



What is GA 

• The evolution usually starts from a population of 
randomly generated individuals and happens in 
generations.  

 

• In each generation, the fitness of every individual in 
the population is evaluated, multiple individuals are 
selected from the current population (based on their 
fitness), and modified (recombined and possibly 
mutated) to form a new population. 



What is GA 

• The new population is then used in the next 
iteration of the algorithm.  

• Commonly, the algorithm terminates when 
either a maximum number of generations has 
been produced, or a satisfactory fitness level 
has been reached for the population.  

• If the algorithm has terminated due to a 
maximum number of generations, a 
satisfactory solution may or may not have 
been reached.  



Key terms  

• Individual - Any possible solution  

• Population - Group of all individuals  

• Search Space - All possible solutions to the problem  

• Chromosome - Blueprint for an individual  

• Trait - Possible aspect (features) of an individual 

• Allele - Possible settings of trait (black, blond, etc.) 

• Locus - The position of a gene on the chromosome  

• Genome - Collection of all chromosomes for an 
individual  



Chromosome, Genes and 
Genomes 



Genotype and Phenotype 

• Genotype: 

 – Particular set of genes in a genome 

 

• Phenotype: 

 – Physical characteristic of the genotype 
(smart, beautiful, healthy, etc.) 

 



Genotype and Phenotype 
 



GA Requirements 

• A typical genetic algorithm requires two things to be defined: 
• a genetic representation of the solution domain, and 
• a fitness function to evaluate the solution domain.  
 
• A standard representation of the solution is as an array of bits. 

Arrays of other types and structures can be used in essentially 
the same way.  

• The main property that makes these genetic representations 
convenient is that their parts are easily aligned due to their 
fixed size, that facilitates simple crossover operation.  

• Variable length representations may also be used, but 
crossover implementation is more complex in this case.  

• Tree-like representations are explored in Genetic 
programming. 



Representation 

Chromosomes could be: 

– Bit strings                                         (0101 ... 1100) 

– Real numbers                     (43.2 -33.1 ... 0.0 89.2)  

– Permutations of element     (E11 E3 E7 ... E1 E15) 

– Lists of rules                       (R1 R2 R3 ... R22 R23) 

– Program elements               (genetic programming) 

– ... any data structure ... 

 



GA Requirements 

• The fitness function is defined over the genetic representation 
and measures the quality of the represented solution.  

• The fitness function is always problem dependent.  
• For instance, in the knapsack problem we want to maximize 

the total value of objects that we can put in a knapsack of 
some fixed capacity.  

• A representation of a solution might be an array of bits, where 
each bit represents a different object, and the value of the bit 
(0 or 1) represents whether or not the object is in the 
knapsack.  

• Not every such representation is valid, as the size of objects 
may exceed the capacity of the knapsack.  

• The fitness of the solution is the sum of values of all objects in 
the knapsack if the representation is valid, or 0 otherwise. In 
some problems, it is hard or even impossible to define the 
fitness expression; in these cases, interactive genetic 
algorithms are used. 

http://en.wikipedia.org/wiki/Knapsack_problem


A fitness function 



Basics of GA 

• The most common type of genetic algorithm works like this:  
• a population is created with a group of individuals created 

randomly.  
• The individuals in the population are then evaluated.  
• The evaluation function is provided by the programmer and 

gives the individuals a score based on how well they perform 
at the given task.  

• Two individuals are then selected based on their fitness, the 
higher the fitness, the higher the chance of being selected.  

• These individuals then "reproduce" to create one or more 
offspring, after which the offspring are mutated randomly.  

• This continues until a suitable solution has been found or a 
certain number of generations have passed, depending on the 
needs of the programmer. 



General Algorithm for GA  

• Initialization 

• Initially many individual solutions are randomly 
generated to form an initial population. The 
population size depends on the nature of the 
problem, but typically contains several hundreds or 
thousands of possible solutions.  

• Traditionally, the population is generated randomly, 
covering the entire range of possible solutions (the 
search space).  

• Occasionally, the solutions may be "seeded" in areas 
where optimal solutions are likely to be found. 



General Algorithm for GA 
• Selection 
• During each successive generation, a proportion of the 

existing population is selected to breed a new generation.  
• Individual solutions are selected through a fitness-based 

process, where fitter solutions (as measured by a fitness 
function) are typically more likely to be selected.  

• Certain selection methods rate the fitness of each solution 
and preferentially select the best solutions. Other methods 
rate only a random sample of the population, as this process 
may be very time-consuming. 

• Most functions are stochastic and designed so that a small 
proportion of less fit solutions are selected. This helps keep 
the diversity of the population large, preventing premature 
convergence on poor solutions. Popular and well-studied 
selection methods include roulette wheel selection and 
tournament selection. 



General Algorithm for GA 

• In roulette wheel selection, individuals are 
given a probability of being selected that is 
directly proportionate to their fitness. 

 

• Two individuals are then chosen randomly 
based on these probabilities and produce 
offspring. 



General Algorithm for GA 

  Roulette Wheel’s Selection Pseudo Code: 
  

 for all members of population 
  sum += fitness of this individual 
 end for  
 for all members of population  
  probability = sum of probabilities + (fitness / sum)  
  sum of probabilities += probability  
 end for  
 loop until new population is full  
  do this twice  
   number = Random between 0 and 1  
   for all members of population 
    if number > probability but less than next probability then 

    you have been selected  
   end for  
  end 
   create offspring  
 end loop  



General Algorithm for GA 

• Reproduction 
• The next step is to generate a second generation population 

of solutions from those selected through genetic operators:  

 crossover (also called recombination), and/or mutation. 

• For each new solution to be produced, a pair of "parent" 
solutions is selected for breeding from the pool selected 
previously.  

• By producing a "child" solution using the above methods of 
crossover and mutation, a new solution is created which 
typically shares many of the characteristics of its "parents". 
New parents are selected for each child, and the process 
continues until a new population of solutions of appropriate 
size is generated. 



General Algorithm for GA 

• These processes ultimately result in the next 
generation population of chromosomes that is 
different from the initial generation.  
 

• Generally the average fitness will have 
increased by this procedure for the 
population, since only the best organisms 
from the first generation are selected for 
breeding, along with a small proportion of less 
fit solutions, for reasons already mentioned 
above. 
 



Crossover 
 

• the most common type is single point crossover. In single 
point crossover, you choose a locus at which you swap the 
remaining alleles from on parent to the other. This is complex 
and is best understood visually. 

• As you can see, the children take one section of the 
chromosome from each parent.  

• The point at which the chromosome is broken depends on the 
randomly selected crossover point.  

• This particular method is called single point crossover because 
only one crossover point exists. Sometimes only child 1 or 
child 2 is created, but oftentimes both offspring are created 
and put into the new population.  

• Crossover does not always occur, however. Sometimes, based 
on a set probability, no crossover occurs and the parents are 
copied directly to the new population. The probability of 
crossover occurring is usually 60% to 70%. 



Crossover 
 



Mutation 

 
• After selection and crossover, you now have a new population 

full of individuals.  
• Some are directly copied, and others are produced by 

crossover.  
• In order to ensure that the individuals are not all exactly the 

same, you allow for a small chance of mutation.  
• You loop through all the alleles of all the individuals, and if 

that allele is selected for mutation, you can either change it by 
a small amount or replace it with a new value. The probability 
of mutation is usually between 1 and 2 tenths of a percent.  

• Mutation is fairly simple. You just change the selected alleles 
based on what you feel is necessary and move on. Mutation 
is, however, vital to ensuring genetic diversity within the 
population. 



Mutation 



General Algorithm for GA 

• Termination 
• This generational process is repeated until a 

termination condition has been reached.  

• Common terminating conditions are: 
– A solution is found that satisfies minimum criteria  

– Fixed number of generations reached  

– Allocated budget (computation time/money) reached  

– The highest ranking solution's fitness is reaching or has 
reached a plateau such that successive iterations no longer 
produce better results  

– Manual inspection  

– Any Combinations of the above 



GA Pseudo-code  

 Choose initial population 
 Evaluate the fitness of each individual in the population  
 Repeat  
 

 Select best-ranking individuals to reproduce 
 
 Breed new generation through crossover and mutation (genetic 

operations) and give birth to offspring 
 
 Evaluate the individual fitnesses of the offspring  
 
 Replace worst ranked part of population with offspring  
 

 Until <terminating condition>  
 



Symbolic AI  VS. Genetic Algorithms  

• Most symbolic AI systems are very static.  
• Most of them can usually only solve one given 

specific problem, since their architecture was 
designed for whatever that specific problem was in 
the first place.  

• Thus, if the given problem were somehow to be 
changed, these systems could have a hard time 
adapting to them, since the algorithm that would 
originally arrive to the solution may be either 
incorrect or less efficient.  

• Genetic algorithms (or GA) were created to combat 
these problems; they are basically algorithms based 
on natural biological evolution.  



Symbolic AI  VS. Genetic Algorithms 

• The architecture of systems that implement genetic 
algorithms (or GA) are more able to adapt to a wide range of 
problems.  

• A GA functions by generating a large set of possible solutions 
to a given problem.  

• It then evaluates each of those solutions, and decides on a 
"fitness level" (you may recall the phrase: "survival of the 
fittest") for each solution set.  

• These solutions then breed new solutions.  
• The parent solutions that were more "fit" are more likely to 

reproduce, while those that were less "fit" are more unlikely 
to do so.  

• In essence, solutions are evolved over time. This way you 
evolve your search space scope to a point where you can find 
the solution.  

• Genetic algorithms can be incredibly efficient if programmed 
correctly.  

 



Genetic Programming 
 

• In programming languages such as LISP, the mathematical 
notation is not written in standard notation, but in prefix 
notation. Some examples of this:  

• + 2 1   :  2 + 1  

• * + 2 1 2    :  2 * (2+1)  

• * + - 2 1 4 9  :  9 * ((2 - 1) + 4)  

• Notice the difference between the left-hand side to the right? 
Apart from the order being different, no parenthesis! The 
prefix method makes it a lot easier for programmers and 
compilers alike, because order precedence is not an issue.  

• You can build expression trees out of these strings that then 
can be easily evaluated, for example, here are the trees for 
the above three expressions.  



Genetic Programming 



Genetic Programming 

• You can see how expression evaluation is thus a lot 
easier. 

• What this have to do with GAs? If for example you 
have numerical data and 'answers', but no 
expression to conjoin the data with the answers.  

• A genetic algorithm can be used to 'evolve' an 
expression tree to create a very close fit to the data. 

•  By 'splicing' and 'grafting' the trees and evaluating 
the resulting expression with the data and testing it 
to the answers, the fitness function can return how 
close the expression is.  



Genetic Programming 

• The limitations of genetic programming lie in 
the huge search space the GAs have to search 
for - an infinite number of equations.  

• Therefore, normally before running a GA to 
search for an equation, the user tells the 
program which operators and numerical 
ranges to search under.  

• Uses of genetic programming can lie in stock 
market prediction, advanced mathematics and 
military applications . 



Evolving Neural Networks  

• Evolving the architecture of neural network is 
slightly more complicated, and there have 
been several ways of doing it. For small nets, a 
simple matrix represents which neuron 
connects which, and then this matrix is, in 
turn, converted into the necessary 'genes', 
and various combinations of these are 
evolved. 



Evolving Neural Networks  

• Many would think that a learning function could be 
evolved via genetic programming. Unfortunately, 
genetic programming combined with neural 
networks could be incredibly slow, thus impractical.  

• As with many problems, you have to constrain what 
you are attempting to create.  

• For example, in 1990, David Chalmers attempted to 
evolve a function as good as the delta rule.  

• He did this by creating a general equation based 
upon the delta rule with 8 unknowns, which the 
genetic algorithm then evolved. 



Other Areas 

 

• Genetic Algorithms can be applied to virtually any problem 
that has a large search space.  

 

• Al Biles uses genetic algorithms to filter out 'good' and 'bad' 
riffs for jazz improvisation.  

 

• The military uses GAs to evolve equations to differentiate 
between different radar returns. 

 

• Stock companies use GA-powered programs to predict the 
stock market.  



Example 

• f(x) = {MAX(x2): 0 <= x <= 32 } 

• Encode Solution:  Just use 5 bits (1 or 0). 

• Generate initial population. 

 

 

 

• Evaluate each solution against objective. 

 

 

A 0 1 1 0 1 

B 1 1 0 0 0 

C 0 1 0 0 0 

D 1 0 0 1 1 

Sol. String Fitness % of Total 

A 01101 169 14.4 

B 11000 576 49.2 

C 01000 64 5.5 

D 10011 361 30.9 



Example Cont’d 

• Create next generation of solutions 

– Probability of “being a parent” depends on the fitness. 

• Ways for parents to create next generation 

– Reproduction 
• Use a string again unmodified. 

– Crossover 
• Cut and paste portions of one string to another. 

– Mutation 
• Randomly flip a bit. 

– COMBINATION of all of the above. 

 



Checkboard example 

– We are given an n by n checkboard in which every field can 
have a different colour from a set of four colors. 

–  Goal is to achieve a checkboard in a way that there are no 
neighbours with the same color (not diagonal) 
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Checkboard example Cont’d 

– Chromosomes represent the way the checkboard is 
colored. 

–  Chromosomes are not represented by bitstrings but by 
bitmatrices 

–  The bits in the bitmatrix can have one of the four values 0, 
1, 2 or 3, depending on the color. 

–  Crossing-over involves matrix manipulation instead of 
point wise operating.  

– Crossing-over can be combining the parential matrices in a 
horizontal, vertical, triangular or square way. 

–  Mutation remains bitwise changing bits in either one
 of the other numbers. 

 



Checkboard example Cont’d 

• This problem can be seen as a graph with n nodes 
 and (n-1) edges, so the fitness f(x) is defined as:  

 

     f(x) = 2 · (n-1) ·n 
 



Checkboard example Cont’d 

• Fitnesscurves for different cross-over rules: 
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Questions 

 

 

?? 



THANK YOU 


